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Enabling large scale LAPW DFT
calculations by a scalable iterative
eigensolver

CSE15, Salt Lake City. March 17th E. Di Napoli, D. Wortmann, and
M. Berljafa



Typical Applications

Electronic
Structure

Atomic
Structure

Magnetic
Structure

CSE15, Salt Lake City. March 17th E. Di Napoli, D. Wortmann, and M. Berljafa Folie 2



Outline

The FLAPW method

Sequences of correlated eigenproblems

The algorithm: Chebyshev Accelerated Subspace Iteration (CHASE)

CHASE parallelization and numerical tests

CSE15, Salt Lake City. March 17th E. Di Napoli, D. Wortmann, and M. Berljafa Folie 3



Outline

The FLAPW method

Sequences of correlated eigenproblems

The algorithm: Chebyshev Accelerated Subspace Iteration (CHASE)

CHASE parallelization and numerical tests

CSE15, Salt Lake City. March 17th E. Di Napoli, D. Wortmann, and M. Berljafa Folie 4



Density Functional Theory (DFT)
1 Φ(x1;s1,x2;s2, . . . ,xn;sn) =⇒ Λi,aφa(xi;si)

2 density of states n(r) = ∑a fa |φa(r)|2

3 In the Schrödinger equation the exact Coulomb interaction is substituted
with an effective potential V0(r) = VI(r)+VH(r)+Vxc(r)

Hohenberg-Kohn theorem

∃ one-to-one correspondence n(r)↔ V0(r) =⇒ V0(r) = V0(r)[n]
∃! a functional E[n] : E0 = minnE[n]

The high-dimensional Schrödinger equation translates into a set of coupled
non-linear low-dimensional self-consistent Kohn-Sham (KS) equation

∀ a solve ĤKSφa(r) =

(
− h̄2

2m
∇

2 +V0(r)

)
φa(r) = εaφa(r)
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DFT self-consistent field cycle

Initial guess
for charge density

nstart(r)

Compute discretized
Kohn-Sham
equations

Solve a set of
eigenproblems

P(`)
k1

. . .P(`)
kN

Compute new
charge density

n(`)(r)

Converged?

|n(`)−n(`−1)|< η

OUTPUT
Electronic
structure,

. . .

No

Yes
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Zoo of methods

LDA
GGA

LDA + U
Hybrid functionals
GW-approximation

Plane waves
Localized basis set
Real space grids
Green functions

All-electron
Pseudo-potential

Shape approximations
Full-potential

Spin polarized calculations

Finite differences
Non-relaticistic eqs.

Scalar-relativistic approx,
Spin-orbit coupling

Dirac equation

(
− h̄2

2m ∇2 +V0(r)
)

φa(r) = εaφa(r)
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Introduction to FLAPW
LAPW basis set

ψk,ν(r) = ∑
|G+k|≤Gmax

cG
k,νφG(k,r)

k Bloch vector
ν band index

φG(k,r) =

 ei(k+G)r Interstitial (I)

∑
`,m

[
aα,G
`m (k)uα

` (r)+bα,G
`m (k)u̇α

` (r)
]

Y`m(r̂α) Muffin Tin

boundary conditions

Continuity of wavefunction and its
derivative at MT boundary

⇓
aα,G
`m (k) and bα,G

`m (k)
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Where does the CPU time go?

H and S Eigensolver Charge CPU time PE
50 % 13 % 33% 28 min. 1
27 % 20 % 44 % 36 min. 12
33 % 50 % 17 % 10 min. 30
23 % 61 % 11 % 12 min. 40

Solving the generalized eigenvalue problem

1 every P(`)
k : A(`)

k ck = B(`)
k λck is a generalized eigenvalue problem;

2 A and B are DENSE and hermitian (B is positive definite);

3 required: lower 2÷10 % of eigenpairs;

4 momentum vector index: k = 1 : 10÷100;

5 iteration cycle index: `= 1 : 20÷50.
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Sequences of Eigenproblems
Adjacent iteration cycles

ITERATION (`)

P(`)
k1

(X(`)
k1

,Λ
(`)
k1
)

P(`)
k2

(X(`)
k2

,Λ
(`)
k2
)

P(`)
kN

(X(`)
kN

,Λ
(`)
kN
)

X ≡ {x1, . . . ,xn}

direct

solver

direct

solver

direct

solver

ITERATION (`+1)

P(`+1)
k1

(X(`+1)
k1

,Λ
(`+1)
k1

)

P(`+1)
k2

(X(`+1)
k2

,Λ
(`+1)
k2

)

P(`+1)
kN

(X(`+1)
kN

,Λ
(`+1)
kN

)

Λ≡ diag(λ1, . . . ,λn)

direct

solver

direct

solver

direct

solver

Next
cycle
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Angles evolution
An example

Example: a metallic compound at fixed k
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An alternative solving strategy
Adjacent cycles
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Chebyshev Filtered Subspace Iteration method
Properties and algorithm evolution

Iterative solver musts

input: the full set of multiple starting vectors Z0 ≡ X(`−1)
ki

(:,1 : NEV);

needed: it can efficiently use dense linear algebra kernels (i.e. xGEMM);

needed: it avoids stalling when facing small clusters of eigenvalues;

Chebyshev Subspace Iteration

Firstly introduced in [Rutishauser 1969]

A version (called CheFSI) tailored to electronic structure computation in
[Zhou, Saad, Tiago and Chelikowski 2006] for sparse eigenvalue
problems.

Our ChASE : 1) is tailored for dense eigenproblem sequences, 2)
introduces a locking mechanism, 3) contains a refining inner loop, and
4) optimizes the polynomial degree.
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The core of the algorithm: Chebyshev filter
Chebyshev polynomials

A generic vector v = ∑
n
i=1 sixi is very quickly aligned in the direction of the

eigenvector corresponding to the extremal eigenvalue λ1

vm = pm(A)v =
n

∑
i=1

si pm(A)xi =
n

∑
i=1

si pm(λi)xi

= s1x1 +
n

∑
i=2

si
Cm(

λi−c
e )

Cm(
λ1−c

e )
xi ∼ s1x1
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The core of the algorithm: Chebyshev filter
In practice

Three-terms recurrence relation
Cm+1 (t) = 2xCm (t)−Cm−1 (t) ; m ∈N, C0 (t) = 1, C1 (t) = x

Zm
.
= pm(H̃) Z0 with H̃ = H− cIn

FOR: i = 1→ DEG−1

Zi+1 ← 2
σi+1

e
H̃ × Zi −σi+1σi Zi−1 xGEMM

END FOR.
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Polynomial degree optimization
Convergence ratio and residuals

Definition
The convergence ratio for the eigenvector xi corresponding to eigenvalue λi /∈ [α,β]
is defined as

τ(λi) = |ρi|−1 = min
±

∣∣∣∣∣∣λi− c
e
±

√(
λi− c

e

)2

−1

∣∣∣∣∣∣ .
The further away λi is from the interval [α,β] the smaller is |ρi|−1 and the faster the
convergence to xi is.

For a set of input vectors V = {v1,v2, . . . ,vnev}

Residuals are a function of m and |ρ|

Res(vm
i )∼ Const×

∣∣∣ 1
ρi

∣∣∣m 1≤ i≤ k.

Res(vm+m0
i )≈ Res(vm0

i )
∣∣∣ 1

ρi

∣∣∣m ⇒ mi ≥ ln
∣∣∣ TOL

Res(vm0
i )

∣∣∣/ ln‖ρi‖
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ChASE pseudocode (optimized)
1 Chebyshev filter. Initial filter W←− Z0. with DEG= m0.

2 Re-orthogonalize W = QR & compute the Rayleigh quotient G = Q†HQ.

3 Solve the reduced problem GY = YΛ and compute the approximate Ritz
pairs (Λ,W← QY) and store their residuals Res(wi).

REPEAT UNTIL CONVERGENCE:
4 Optimizer. Compute the polynomial degrees mi ≥ ln

∣∣∣ TOL
Res(wi)

∣∣∣/ ln‖ρi‖.

5 Chebyshev filter. Filter W←− Z0 with DEG= mi.

6 Re-orthogonalize W = QR & compute the Rayleigh quotient G = Q†HQ.

7 Solve the reduced problem GY = YΛ and compute the approximate Ritz
pairs (Λ,W← QY).

8 lock the converged vectors.

9 Store the residuals Res(wi) of the unconverged vectors.

END REPEAT
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Experimental tests setup

C++ implementation of ChASE

EleChASE – Elemental (MPI) parallelization for distributed memory

OMPChASE – OpenMP 4.0 parallelization for shared memory

CUChASE – CUDA parallelization for GPUs

Interface C++/Fortran so as to call ChASE from FLEUR

Tests were performed on the JUROPA and the RWTH RZ cluster.

2 Intel Xeon 5570 (Nehalem-EP) 4d-core processors/node;

2 Intel Xeon E5 2670 (Sandy-Bridge) 8-core processors/node;

NVIDIA K20m

Xeon Phi

Matrix sizes: 2,600 ÷ 29,500.
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ChASE time profile
As a function of iteration cycles

Time spent in each stage of the algorithm as a function of the iteration
index ` for a system of size n = 9,273.
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iteration index `

0
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Speed-up
Speed-up = CPU time (input random vectors)

CPU time (input approximate eigenvectors)

3 7 11 15 19 23
Iteration Index �

0

1

2

3

4
S
p
e
e
d
-u

p
Au98Ag10 - n=13,379 - 128 cores.
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Scalability (MPI implementation)
Strong Scalability (the size of the eigenproblems are kept fixed while the

number of cores is progressively increased) for EleChASE over three
systems of size n = 13,379−12,455−9,273 respectively.
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tim
e 
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EleChASE versus direct solvers (parallel MRRR)
For the size of eigenproblems here tested the ScaLAPAK implementation of BXINV

or MRRR is on par of worse than EleMRRR. For this reason a direct comparison
with ScaLAPACK is not included.
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EleChASE versus direct solvers (parallel MRRR)
For the size of eigenproblems here tested the ScaLAPAK implementation of BXINV
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Offloading to Xeon Phis and GPUs
The role of affinity on Xeon Phi

xGEMM performs at best at 66% of peak performance (1000 GFlops)
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Offloading to Xeon Phis and GPUs
GPUs vs CPUs
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Offloading to Xeon Phis and GPUs
multi-cores vs many-cores
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Conclusions and future work

Algorithmic strategy

Sequences of “correlated” eigenproblems⇒ Tailored algorithms

Exploiting the correlation of the eigenproblem sequence to speedup the
solution of each P(`) is a successful strategy;

Combining iterative methods with kernels for dense linear algebra can
pay off.

The parallelization shows great potential for scalability and parallel
efficiency;

Uncovering information can lead to further algorithmic optimizations;

ONGOING AND FUTURE WORK

1 Exploring hybrid parallelizations of the code.

2 Implement in FLEUR a mixed direct-iterative solver;
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