

Enabling large scale LAPW DFT calculations by a scalable iterative eigensolver

CSE15, Salt Lake City. March 17th | **E. Di Napoli**, D. Wortmann, and M. Berljafa

Typical Applications

E. Di Napoli, D. Wortmann, and M. Berljafa

Outline

The FLAPW method

Sequences of correlated eigenproblems

The algorithm: Chebyshev Accelerated Subspace Iteration (CHASE)

CHASE parallelization and numerical tests

Outline

The FLAPW method

Sequences of correlated eigenproblems

The algorithm: Chebyshev Accelerated Subspace Iteration (CHASE)

CHASE parallelization and numerical tests

Density Functional Theory (DFT)

- **2** density of states $n(\mathbf{r}) = \sum_{a} f_a |\phi_a(\mathbf{r})|^2$
- In the Schrödinger equation the exact Coulomb interaction is substituted with an effective potential $V_0(\mathbf{r}) = V_1(\mathbf{r}) + V_H(\mathbf{r}) + V_{xc}(\mathbf{r})$

Hohenberg-Kohn theorem

- \exists one-to-one correspondence $n(\mathbf{r}) \leftrightarrow V_0(\mathbf{r}) \implies V_0(\mathbf{r}) = V_0(\mathbf{r})[n]$
- \exists ! a functional E[n] : $E_0 = \min_n E[n]$

The high-dimensional Schrödinger equation translates into a set of coupled non-linear low-dimensional self-consistent Kohn-Sham (KS) equation

$$\forall a \text{ solve } \hat{H}_{\text{KS}}\phi_a(\mathbf{r}) = \left(-\frac{\hbar^2}{2m}\nabla^2 + V_0(\mathbf{r})\right)\phi_a(\mathbf{r}) = \varepsilon_a\phi_a(\mathbf{r})$$

DFT self-consistent field cycle

Zoo of methods

LDA GGA LDA + U Hybrid functionals GW-approximation

Plane waves Localized basis set Real space grids Green functions

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V_0(\mathbf{r})\right)\phi_a(\mathbf{r}) = \varepsilon_a\phi_a(\mathbf{r})$$

Finite differences Non-relaticistic eqs. Scalar-relativistic approx, Spin-orbit coupling Dirac equation All-electron
Pseudo-potential
Shape approximations
Full-potential
Spin polarized calculations

Introduction to FLAPW

LAPW basis set

$$\begin{array}{lcl} \psi_{\mathbf{k},\mathbf{v}}(\mathbf{r}) & = & \displaystyle\sum_{|\mathbf{G}+\mathbf{k}| \leq \mathbf{G}_{max}} c_{\mathbf{k},\mathbf{v}}^{\mathbf{G}} \phi_{\mathbf{G}}(\mathbf{k},\mathbf{r}) & \mathbf{k} & \text{Bloch vector} \\ \mathbf{v} & \text{band index} \end{array}$$

$$\phi_{\mathbf{G}}(\mathbf{k},\mathbf{r}) & = & \begin{cases} e^{i(\mathbf{k}+\mathbf{G})\mathbf{r}} & \text{Interstitial (I)} \\ \displaystyle\sum_{\ell,m} \left[a_{\ell m}^{\alpha,\mathbf{G}}(\mathbf{k}) u_{\ell}^{\alpha}(r) + b_{\ell m}^{\alpha,\mathbf{G}}(\mathbf{k}) \dot{u}_{\ell}^{\alpha}(r) \right] Y_{\ell m}(\hat{\mathbf{r}}_{\alpha}) & \text{Muffin Tin} \end{cases}$$

boundary conditions

Continuity of wavefunction and its derivative at MT boundary

$$a_{\ell m}^{\alpha, \mathbf{G}}(\mathbf{k})$$
 and $b_{\ell m}^{\alpha, \mathbf{G}}(\mathbf{k})$

E. Di Napoli, D. Wortmann, and M. Berljafa

Where does the CPU time go?

H and S	Eigensolver	Charge	CPU time	PE
50 %	13 %	33%	28 min.	1
27 %	20 %	44 %	36 min.	12
33 %	50 %	17 %	10 min.	30
23 %	61 %	11 %	12 min.	40

Where does the CPU time go?

H and S	Eigensolver	Charge	CPU time	PE
50 %	13 %	33%	28 min.	1
27 %	20 %	44 %	36 min.	12
33 %	50 %	17 %	10 min.	30
23 %	61 %	11 %	12 min.	40

Solving the generalized eigenvalue problem

- every $P_{\mathbf{k}}^{(\ell)}: A_{\mathbf{k}}^{(\ell)} c_{\mathbf{k}} = B_{\mathbf{k}}^{(\ell)} \lambda c_{\mathbf{k}}$ is a generalized eigenvalue problem;
- 2 *A* and *B* are **DENSE** and hermitian (B is positive definite);
- \blacksquare required: lower $2 \div 10$ % of eigenpairs;
- 4 momentum vector index: $\mathbf{k} = 1 : 10 \div 100$;
- **5** iteration cycle index: $\ell = 1:20 \div 50$.

Outline

The FLAPW method

Sequences of correlated eigenproblems

The algorithm: Chebyshev Accelerated Subspace Iteration (CHASE)

CHASE parallelization and numerical tests

Sequences of Eigenproblems

Adjacent iteration cycles

Sequences of Eigenproblems

Adjacent iteration cycles

Sequences of Eigenproblems

Adjacent iteration cycles

Angles evolution

An example

Example: a metallic compound at fixed \boldsymbol{k}

An alternative solving strategy

Adjacent cycles

Outline

The FI APW method

Sequences of correlated eigenproblems

The algorithm: Chebyshev Accelerated Subspace Iteration (CHASE)

CHASE parallelization and numerical tests

Chebyshev Filtered Subspace Iteration method

Properties and algorithm evolution

Iterative solver musts

- input: the full set of multiple starting vectors $Z_0 \equiv X_{\mathbf{k}_i}^{(\ell-1)}(:,1:\mathsf{NEV});$
- needed: it can efficiently use dense linear algebra kernels (i.e. xGEMM);
- needed: it avoids stalling when facing small clusters of eigenvalues;

Chebyshev Subspace Iteration

- Firstly introduced in [Rutishauser 1969]
- A version (called CheFSI) tailored to electronic structure computation in [Zhou, Saad, Tiago and Chelikowski 2006] for sparse eigenvalue problems.
- Our ChASE: 1) is tailored for dense eigenproblem sequences, 2) introduces a locking mechanism, 3) contains a refining inner loop, and 4) optimizes the polynomial degree.

The core of the algorithm: Chebyshev filter

Chebyshev polynomials

A generic vector $v = \sum_{i=1}^{n} s_i x_i$ is very quickly aligned in the direction of the eigenvector corresponding to the extremal eigenvalue λ_1

$$v^{m} = p_{m}(A)v = \sum_{i=1}^{n} s_{i} p_{m}(A)x_{i} = \sum_{i=1}^{n} s_{i} p_{m}(\lambda_{i})x_{i}$$
$$= s_{1}x_{1} + \sum_{i=2}^{n} s_{i} \frac{C_{m}(\frac{\lambda_{i}-c}{e})}{C_{m}(\frac{\lambda_{i}-c}{e})}x_{i} \sim \boxed{s_{1}x_{1}}$$

xGEMM

The core of the algorithm: Chebyshev filter

In practice

Three-terms recurrence relation

$$C_{m+1}(t) = 2xC_m(t) - C_{m-1}(t); \qquad m \in \mathbb{N}, \quad C_0(t) = 1, \quad C_1(t) = x$$

$$Z_m \doteq p_m(\tilde{H}) Z_0$$
 with $\tilde{H} = H - cI_n$

FOR:
$$i = 1 \rightarrow \text{DEG} - 1$$

END FOR.

Polynomial degree optimization

Convergence ratio and residuals

Definition

The **convergence ratio** for the eigenvector x_i corresponding to eigenvalue $\lambda_i \notin [\alpha, \beta]$ is defined as

$$\tau(\lambda_i) = |\rho_i|^{-1} = \min_{\pm} \left| \frac{\lambda_i - c}{e} \pm \sqrt{\left(\frac{\lambda_i - c}{e}\right)^2 - 1} \right|.$$

The further away λ_i is from the interval $[\alpha, \beta]$ the smaller is $|\rho_i|^{-1}$ and the faster the convergence to x_i is.

For a set of input vectors $V = \{v_1, v_2, \dots, v_{\text{nev}}\}\$

Residuals are a function of m and $|\rho|$

$$\begin{split} \operatorname{Res}(v_i^m) &\sim & \operatorname{Const} \times \left| \frac{1}{\rho_i} \right|^m & 1 \leq i \leq k. \\ \operatorname{Res}(v_i^{m+m_0}) &\approx & \operatorname{Res}(v_i^{m_0}) \left| \frac{1}{\rho_i} \right|^m & \Rightarrow & m_i \geq \ln \left| \frac{\operatorname{TOL}}{\operatorname{Res}(v_i^{m_0})} \right| / \ln \|\rho_i\| \end{split}$$

ChASE pseudocode (optimized)

- **1** Chebyshev filter. Initial filter $W \leftarrow Z_0$. with $DEG = m_0$.
- **2** Re-orthogonalize W = QR & compute the Rayleigh quotient $G = Q^{\dagger}HQ$.
- Solve the reduced problem $GY = Y\Lambda$ and compute the approximate Ritz pairs $(\Lambda, W \leftarrow QY)$ and store their residuals $Res(w_i)$.

ChASE pseudocode (optimized)

- **1** *Chebyshev filter.* Initial filter $W \leftarrow Z_0$. with $DEG = m_0$.
- **2** Re-orthogonalize W = QR & compute the Rayleigh quotient $G = Q^{\dagger}HQ$.
- Solve the reduced problem $GY = Y\Lambda$ and compute the approximate Ritz pairs $(\Lambda, W \leftarrow QY)$ and store their residuals $Res(w_i)$.

REPEAT UNTIL CONVERGENCE:

- 4 Optimizer. Compute the polynomial degrees $m_i \geq \ln \left| \frac{\text{TOL}}{\text{Res}(w_i)} \right| / \ln \|\rho_i\|$.
- **5** Chebyshev filter. Filter $W \leftarrow Z_0$ with $DEG = m_i$.
- **6** Re-orthogonalize W = QR & compute the Rayleigh quotient $G = Q^{\dagger}HQ$.
- Solve the reduced problem $GY = Y\Lambda$ and compute the approximate Ritz pairs $(\Lambda, W \leftarrow QY)$.
- 8 lock the converged vectors.
- **9** Store the residuals $Res(w_i)$ of the unconverged vectors.

FND REPEAT

Outline

The FLAPW method

Sequences of correlated eigenproblems

The algorithm: Chebyshev Accelerated Subspace Iteration (CHASE)

CHASE parallelization and numerical tests

Experimental tests setup

C++ implementation of ChASE

- EleChASE Elemental (MPI) parallelization for distributed memory
- OMPChASE OpenMP 4.0 parallelization for shared memory
- CUChASE CUDA parallelization for GPUs
- Interface C++/Fortran so as to call ChASE from FLEUR

Tests were performed on the JUROPA and the RWTH RZ cluster.

- 2 Intel Xeon 5570 (Nehalem-EP) 4d-core processors/node;
- 2 Intel Xeon E5 2670 (Sandy-Bridge) 8-core processors/node;
- NVIDIA K20m
- Xeon Phi

Matrix sizes: 2,600 ÷ 29,500.

ChASE time profile

As a function of iteration cycles

Time spent in each stage of the algorithm as a function of the iteration index ℓ for a system of size n = 9,273.

Speed-up

Speed-up = CPU time (input random vectors)

CPU time (input approximate eigenvectors)

Scalability (MPI implementation)

Strong Scalability (the size of the eigenproblems are kept fixed while the number of cores is progressively increased) for EleChASE over three systems of size n = 13,379 - 12,455 - 9,273 respectively.

EleChASE versus direct solvers (parallel MRRR)

For the size of eigenproblems here tested the ScaLAPAK implementation of BXINV or MRRR is on par of worse than EleMRRR. For this reason a direct comparison with ScaLAPACK is not included.

EleChASE versus direct solvers (parallel MRRR)

For the size of eigenproblems here tested the ScaLAPAK implementation of BXINV or MRRR is on par of worse than EleMRRR. For this reason a direct comparison with ScaLAPACK is not included.

Offloading to Xeon Phis and GPUs

The role of affinity on Xeon Phi

xGEMM performs at best at 66% of peak performance (1000 GFlops)

Offloading to Xeon Phis and GPUs

GPUs vs CPUs

Offloading to Xeon Phis and GPUs

multi-cores vs many-cores

Conclusions and future work

Algorithmic strategy

Sequences of "correlated" eigenproblems ⇒ Tailored algorithms

- Exploiting the correlation of the eigenproblem sequence to speedup the solution of each $P^{(\ell)}$ is a successful strategy;
- Combining iterative methods with kernels for dense linear algebra can pay off.
- The parallelization shows great potential for scalability and parallel efficiency;
- Uncovering information can lead to further algorithmic optimizations;

ONGOING AND FUTURE WORK

- Exploring hybrid parallelizations of the code.
- 2 Implement in FLEUR a mixed direct-iterative solver;

References

- 1 M.Berliafa, D. Wortmann and EDN

 An Optimized and Scalable Eigensolver for Sequences of Eigenvalue

 Problems
- Concurrency and Computation: Practice and Experience, 27 (2015) 905
- 2 EDN, and M. Berljafa A Parallel and Scalable Iterative Solver for Sequences of Dense Eigenproblems Arising in FLAPW Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, Vol 8385. [arXiv:1305.5120]
- 3 EDN, and M. Berljafa Block Iterative Eigensolvers for Sequences of Correlated Eigenvalue Problems Comp. Phys. Comm. 184 (2013), pp. 2478-2488, [arXiv:1206.3768].
- 4 EDN, P. Bientinesi, and S. Blügel, Correlation in sequences of generalized eigenproblems arising in Density Functional Theory, Comp. Phys. Comm. 183 (2012), pp. 1674-1682, [arXiv:1108.2594].